EXCESS CAM Limited Edition

 Release on Feb,2020 

CAM/CAM System for Parts 

Automatically extracts holes and pockets from a 3D model. Quickly generates NC data from roughing to finishing by assigning a machining pattern.

"Parts CAM" is a CAD/CAM system that provides total support for drilling, 2-axis (2.5-axis) pocketing, and 3-axis milling, required for metal part machining. The CAM features equipped with the CAM solver of "CAM-TOOL", which has been cultivated through extensive machining experience, and the CAD features such as drawing and modeling of our leading product "EXCESS-HYBRID Ⅱ", which has excellent operability, enable to create data easily and quickly, realizing high-grade and high-efficient machining of micro to large parts.

"Parts CAM", which combines the core technologies developed by 2 products so far, will improve productivity and profitability in the field of metalworking.

 Function digest(Japanese Video)

2D CAD Function

There are many drawing functions and dimensions / notes to create a machining drawing, as well as editing functions. By creating hole entities with machining attributes, you can easily create drawings necessary for machining instructions such as hole interference checking, hole list, hole section creation, and so on. It automatically assigns processes and tools, cutting conditions by passing this information to the CAM, and the processing data can be quickly created without time-consuming operation.

Create Drawing / Section View

Converts an import 3D model (solid or surface) to 2D geometries, such as a front view, a side view, and an isometric view. You can also create a section view and an arrow view.

Dimension / Annotation

Dimension can be added efficiently by specifying how to display an arrow or tolerance in the dimension dialog box. You can also create Origin dimensions by using the Auto Dimensions function in a plate drawing.

Smart Edit

You can modify shapes, dimensions, notes, and edit them with a single command. Because the specified element type (or part) changes the content, you don't need to select a command for each purpose, so you can significantly reduce the edited work time.

2D / 2.5D Machining Function

Machining information such as hole type, depth and machining direction can be inherited to CAM by linking the entitiies in a 2D drawing, and processing data can be created by minimal operation. You can automatically extract parts that need to be machined from the 3D model, and you can assign a machining pattern from the face color. The system determines the appropriate conditions according to the material, conditions after the previous process, and the processing method.

Machining Definition

Automatically assigns machining operations to a machining code defined in CAD for a 2 dimensional shape.You can define a machining process by using a list format interface while checking the pre and post process. You can also use a standardized machining pattern to quickly output NC data when you create machining data from an imported drawing, such as DXF.

Part Extraction

Automatically recognizes a 3D model and automatically creates a round hole, pocket, 2.5D, and island profile. The recognized shape has machining attributes, such as depth and chamfer. If a face color is assigned to a working part of a 3D model, you can also assign a machining pattern at the same time.

Circular Hole Machining

It supports various machining such as Canned Cycle Drilling, original cycle (G01), and helical tapping. It is possible to define multiple holes at once, and you can easily define tap and the counterbore machining of the grille.

Pocket Machining

Create an appropriate path for areas that have closed regions or open faces. Automatically avoids the island shape of the pocket, 2.5 d convex shape, and the processed area. Automatic creation of the approach is possible, and it is effective when a multi-shape machining definition is made.

2.5D Machining

2.5D contour line machining of X-Y axis can be easily performed based on the information of plane view and section view. You can also create a 2.5D machining pass in the X-axis and Y-axis direction by performing an axis conversion.

G01 Cycle

You can use G01 code to perform the behavior of a normal fixed cycle. It is possible to define a unique cycle code by mastering the settings such as the cut rate and the return amount at the depth ratio.

Helical Tapping

In reference to the tool information from the master, NC data according to helical tap tool can be created. It is possible to specify the notch amount of XY to drive the machining area into inside by repeating several times.


You can check the animation on the CAM screen. The safety improvement can be achieved by checking the cutting condition and machining order before the actual machining, and by checking the residue and cutting.

3D Machining Rough Function

The roughing process from the material shape and the stock of the previous step are automatically recognized, and an efficient roughing cutter pass is outputted. The optimum roughing process can be performed on the geometry and the tool to be used, such as the Z-pitch interpolation path for the load reduction path and the low-lying area. The tool and holder interference checks, path optimization can also be performed at the time of operation, and the machining path can be checked by the CL display and trajectory simulation, so that safe and efficient machining paths can be created.

Z-level Rough Cutting

Create Z-level offset tool-paths for roughing. "Insert trochoid" and "Insert R" reduce the cutting-load, and contribute to keeping a constant feed-rate.

Scanning-line Rough Cutting

Roughing mode by Z-level & Bidirectional cutting mode brings benefits to roughing for large stock with long distance tool-paths, and gives the ability to reduce machining time because of less deceleration. Supporting both of core & cavity shapes, the system automatically recognizes the cutting areas and generates tool-paths, even if the shapes are complex.

CL Check

You can view the color-coded tool path per feed rate, line/arc, component point, segment and trace. The tool shape can be placed on the path, and the state with the shank or the holder can be checked.

3D Machining Finish Function Finish Module

The remaining part after roughing can be automatically detected from stock, and an efficient remaining tool path can be created. Moreover, high-precision contour passes provide a high-grade finish surface required for shape processing.

Z-level Finishing

"Z-level Finishing", which performs climb milling, assures quality high speed and high-precision machining. Spiral tool-paths can be also created, which contributes to the reduction of connecting-moves. This is the best way to machine automatically since gently sloping area and horizontal area can be also executed at once.


The system automatically detects the uncut area of previous process, and generates tool-paths for the remains. It is possible to machine efficiently for each portion, cutting by along-surface tool-paths at a gently sloped area, and cutting by Z-level tool-paths at steep and grooved areas. The uncut area can be recognized correctly since all types of cutting-tool (ball/radius/square end-mill) can be utilized.

Along Surface 

Creates a machining path with a constant pitch along the face. Paths that interfere with the shape can be projected in the direction suitable for the shape.

3D CAD Function Modeler Module Surface Module

Unique hybrid modeling technology achieves to operate 2D drawing and 3D model on the same screen and in the same menu. It includes Solid modeling capabilities such as extrusions, rotations, and cuts, and a variety of Surface functions necessary to edit the machining surface. There are many powerful functions that can edit the model as you like without it feeling uncomfortable.

Solid Modeling

Solid modeling functions are available such as extrusion, rotation, sweep, loft, cut, fillet, chamfer, draft angle, hole process, etc. Since it is also possible to specify the height on the side of a 2D view, even a beginner can easily perform modeling without any discomfort.

Surface Modeling

Fill/Offset/Trim/extension etc. are available for surface modeling, which is useful for correction after the model import and the handling of complicated free curved surface.


Necessary lines are required on the space to perform 3D modeling. This function supports various curves such as trace curve, reference line, blend curve, fillet curve, etc. to help modeling work.

3D Modeling History

Execution history can be recorded for every 3D modeling command. Changing shapes and dimensions, reordering history, and rebuilding makes it easier to update your modeling shapes. It is also possible to confirm the modeling procedures by rolling back.

Confirmation function

There are a number of features, such as a zebra display to visually check connectivity between the curved surfaces, a slope and thickness analysis to confirm the formability of the product model, and a flat height checking function in the machining procedure.

Wire-cutting Function WC Module

This is a CAM option for wire discharge machining. Machining data can be created by assigning rich processing patterns and processing conditions such as punch, die, 4-axis Machining, coreless, and so on. It also supports new machine tools such as Welding Machining, and can improve the operating efficiency of machine tools and the efficiency of work.

4-axis Machining

NC data for machining with different profiles between the top and bottom can be automatically created by specifying the figure of program/sub-program face. It is also possible to define the profiles from 3D models.

Coreless Machining

Coreless machining for round/deformed holes can be performed. Gradually-changed taper machining is also supported in coreless machining. The long unmanned operation of machine tool becomes possible because cutoff figure does not occur, which contributes to the improvement in machine operating rate.

Welding Machining

It is often necessary to rely on human hands for the removal of cores in plate processing. It is a function to eliminate the cutoff process by welding the core partially in machining. We can save labor by cutting off the separation process.

System expansion is available to meet user's business demand even after introduction. We also welcome customization for specific needs.

Basic module.This is a basic package module for "Parts CAM" with 3D models, 2D drawings, simple dimension / simple annotation, basic 2D drafting capabilities, 2D MC features and 3D MC roughing (Z-level Rough Cutting, Scanning-line Rough Cutting).

Includes a 3D finish machining mode (Z-level Finishing / Rest / Along Surface).

Process functions for Machining and Wire-cutting are available. High quality Wire-cutting data from 2D/3D data can be created by abundant machining patterns and post processor that can be flexibly customized.

It is possible to perform advanced conversion that can not be obtained by IGES or STEP conversion.

A basic module of modeling solids & surfaces.

Includes a set of commands specific to surface modeling.


Windows® 10 Pro 64bit
Windows® 10 Education 64bit


Multi-Core Processor


8GB or more


80GB or more


3D Acceleration OpenGL board
NVIDIA® Quadro Series
Memory 1GB or more

Version correspondence table

 Movie:Step plate(Motorcycle parts)
 Generator cover / Step plate(Motorcycle parts)


5-Axis MC Compatible High-end CAM System

Learn More 


SOLIDWORKS® add-in System for Molds / Dies

Learn More 

AIQ (Activity Inductrial Quality)

Process Management System for Molds / Parts

Learn More 

Product Inquiry

Contact us